As commercial availability of quantum computers moves closer to reality, researchers and vendors are investing in efforts to create quantum-secured networks.
Quantum networks use entangled photons or other particles to ensure secure communications, but they are not, in and of themselves, used for general communication. Quantum networks are expensive and slow. And though nobody can listen in on the messages without breaking the entanglement of the photons, hackers can still try to attack the systems before the messages get into the quantum network, or after they leave it.
Instead, quantum networks today are largely used for quantum key distribution (QKD), which uses quantum mechanics to secure the transmission of symmetric encryption keys. According to a June report by quantum industry analyst firm IQT research, the worldwide market for quantum networks will near $1.5 billion in 2027 and grow to more than $8 billion by 2031, and QKD will be the main revenue driver, followed by a rise in networks that use emerging quantum repeaters to connect quantum computers together and quantum sensor networks.